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ABSTRACT

Detecting scanning in Internet traffic is a well-studied topic with no

single, definitive approach. Among the proposed methods are two

which are widely accepted, but with known limitations: one based

on a static fanout ratio, and another on principal component analy-

sis (PCA). We introduce a two-step procedure based on Functional

PCA and k-means clustering which we argue provides significantly

better robustness and data-driven applicability. We validate and

compare using synthetic datasets with “ground truth” about anom-

alies on FTP and HTTP port traffic flows; our method identifies

all scanners. We also compare approaches using NTP flow data

prior to a reflective DDoS attack in 2014, providing a real-world

example to illustrate the deficiencies of existing approaches and

how they are addressed by our functional framework procedure.

Lastly, we discuss insights into the traffic that cannot be obtained

by the previous methods.
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1 INTRODUCTION

Bad guys are continually scanning networks as they try to find

vulnerable systems. They wish to exploit these with a variety of

attacks ranging from distributed denial of service (DDoS) to botnet

farming to individual system compromise. High profile networks in

companies, banks, governments, and service providers are targeted.
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The adversaries want to not only steal data for use or sale, but also

disrupt the operations of their victims and impact their reputation.

Just as there are those working on the next attacks, our commu-

nity must strive to prevent them. Our goal is to be able to pre-empt

an attack, yet we do not attempt to detect attacks specifically; we

analyze the activity prior to them. It is possible that our technique

could be used to detect attacks and support mitigation, but that is

not the focus here.

Several approaches to find scanners use heuristic-based meth-

ods [5], Machine Learning [6], or Statistical-based filtering [20],

with varying degrees of success. For a survey of scanning, see the

works of [1] and [3].

We add to this collection by presenting a method to detect ‘out-

liers,’ or unusual behaviors in a network, in two steps: (1) functional

principal component analysis (FPCA) and (2) k-means clustering.

With a synthetic data set that includes ground truth regarding scan-

ning activity, we show that our approach is well-suited for identify-

ing these behaviors. To further discuss application of the procedure

and interpretation of results, we study actual NTP traffic flows dur-

ing the three months leading to a ditributed reflective DDoS attack.

Throughout, we compare our proposed method against previously

published approaches for scanner detection: a static fanout ratio

and a technique based on the standard principal component analy-

sis (PCA). We demonstrate improvements our functional framework

provides over both.

2 RELATEDWORK

Anomaly detection methods can be classified into (1) signature

based and (2) profile-based [6]. Signature-based uses prior knowl-

edge about characteristics of the anomaly of interest to identify

suspects. These methods have several concerns, e.g., the need for

labeled data, an external supervisor, and prior results from anom-

alies. One well-known signature-based approach was proposed

by [1], which focused on detecting TCP scanners. They consider

the count of a remote host’s connection attempts to access local

hosts’ services that result in established connections (i.e., good ser-

vice fanout) and those that did not result in established connections

(bad service fanout). A remote host is classified as a scanner if it has

a service fanout of at least four and a ratio of bad to good service

fanout of at least two. A similar technique is used by [5]. We refer

to this method as the “static fanout ratio” later on in the paper.

Profile-based methods create representative “normal” traffic be-

havior, and anomalies are detected by deviations from this profile.

While there may be higher false alarm rates, profile-based methods

are more promising due to their data-driven flexibility and they
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may also detect unknown anomalies [2, 17]. PCA is a widely used

profile-based method. [12] has investigated detecting traffic anom-

alies in DDoS data, where scanners are embedded as a subset. They

use PCA to decompose network traffic into two components. The

anomalous subspace, which is noisier and contains the significant

traffic spikes, is separated from the normal, which is dominated by

predictable traffic. An individual observation is deemed an anomaly

if its projection to the anomalous subspace is large. We refer to

this technique hereafter as the “subspace method”. [6] proposes a

two-stage approach, using (1) PCA to identify potential anomalies,

and (2) a meta-heuristic to group them.

[19] criticizes the use of PCA and presents four issues pertaining

to (i) false positive rates, (ii) traffic measurement aggregation, (iii)

normal subspace pollution, and (iv) correct anomaly identification.

We add to these concerns, by noting that the subspace approach

needs to choose which principal components represent “normal”

behavior, and which ones represent “abnormal” behavior. We will

demonstrate later in the paper that some traffic captures do not lend

themselves to this partition/selection, i.e., all principal components

contain abnormal behaviors, and thus this approach is not usable.

Clustering is another example of a profile-based method. [14]

clustered all traffic, comparing the centers of known “normal” traffic

clusters to the centers of actual traffic, to try and determine if the

actual traffic is not normal. Unfortunately, this approach has only

been applied to Simple Network Management Protocol (SNMP)

objects, not network flows, and requires known normal traffic data.

[7] applies clustering techniques to characterize DDoS attack

traffic (k-means, CLARA, and Self Organizing Maps). k-means was

found to be the most accurate for attack detection because attack

traffic displays strong similarity as opposed to the heterogeneity of

normal traffic. However, their “attack” cluster still mixed legitimate

traffic in with malicious (between .4% and 2.04%). We believe this

phenomenon can be eliminated by clustering only demonstrated

“outliers,” not all traffic.

3 DATASET DESCRIPTIONS

3.1 DARPA Synthetic Dataset

The Defense Advanced Research Projects Agency (DARPA) 2009

intrusion detection dataset, available via Impact Cyber Trust [9],

is synthetically created to emulate traffic between a /16 subnet

(172.28.0.0/16) and the Internet. The dataset is a full packet capture

in pcap format and spans a period of 10 days between the 3rd and

the 12th of November 2009, aggregated hourly. Our analysis uses

the FTP port and HTTP port traffic, which include scanning activity

during normal traffic and DDoS attacks, respectively. We focus on

the scan security events in this paper, but believe in the method’s

ability to perform in both situations.

The synthetic data set of FTP packet flows between source and

destination IPs over 227 hours includes a multitude of security

events, all scans or failed scans, carried out by 4 individual ad-

dresses. There are 216 remaining sources which are classified as

exhibiting “normal” behavior. For the HTTP port, scans as well as

attacks (DDoS and failed attempts) are instigated by 112 individual

addresses. The remaining 1981 IPs constitute normal behavior.

3.2 CSU NTP Dataset

The real-world dataset we use in this paper was also previously

used to study and characterize the NTP amplified DDoS attack and

their impact on a local network [5]. The main wave occurred in late

2013 to early 2014 and peaked at 1% of all global Internet traffic on

February 11, 2014. A significant increase in scanning activities was

seen from a darknet (unused IP address space) operated by Merit

Network [15], preceding the DDoS attacks by a week. This suggests

there are likely scanners in the traffic flows prior to the actual attack.

Our data was extracted from Argus files, which contain the flow

data for all traffic collected from a vantage point at the Colorado

State University (CSU) border router. Raw data is the temporal

count of packets sent between a source and destination IP pair,

specifically for those involving the NTP port. Both inbound and

outbound (with respect to the source address) flows are observed

hourly for six different two-week (approximately) periods from

October 2013 to January 2014, just prior to the beginning of the

attack. Due to privacy concerns, the last octet of each IP address

was anonymized with a different key every two weeks (period).

4 METHODOLOGY

Our approach identifies scanner behavior in two steps. First, the

data is modeled using Functional Principal Component Analysis

(FPCA), and a three standard deviation threshold is applied to iden-

tify outlier IPs. Second, we employ k-means clustering to group the

resulting sources. With this stratification, we can not only under-

stand the activity on a network better, but also investigate common

behaviors in each cluster and identify potential scanners, as well as

other possible anomalies.

Our method requires time-series of measurements capturing

aspects of Internet communications. As the method works in two

steps, two features of interest are necessary: one should be able

to be viewed as functional data for FPCA, and the other should

be scalar or multi-dimensional to allow k-means clustering. In our

case, we use information from source and destination IP pairs in

our search for scanners. Particularly, a time series measuring the

number of destination IPs contacted by individual sources is used

in the first step, and the proportion of these which are met with

a response is used for clustering, defined as at least one packet

returned by the destination. With this, the outliers identified in

the first step will be sources that contact an ‘unusual’ amount of

destinations with respect to the rest of the data set. Then, these are

clustered by their proportions of response.

Certainly, other features or aggregations can be used, such as

traffic measurements by input links or ingress routers, but this

specific scheme is chosen in order to detect scanners. Just as in the

static fanout ratio, we look for sources that contact a large number

of destinations with a low proportion of responses. After the second

step of our procedure is completed, the clusters centered around

lower values can be inspected to find exactly this behavior.

4.1 FPCA & Outlier Detection

Our research methodology relies on a technique that generalizes

the idea of PCA to manipulate functional data [18]. In PCA, data is

transformed to a space spanned by orthogonal vectors, known as

principal components, in such a way as to maximize the variance
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of the linear transformation. FPCA is similar, but from a functional

perspective.We observe an×T matrix whose entrywith coordinates

(i, t ) is the number of destinations contacted by the ith source IP

during the t th time interval. The method models the functional data

as a mean curve plus a linear combination of orthogonal curves.

The model is written as

Yi (ti j ) = Xi (ti j ) + ϵi j = µ (ti j ) +

r∑
k=1

aikψk (ti j ) + ϵi j , (1)

where ti j is the time of the jth observation from the ith source,

Yi (ti j ) is the observation,Xi (t ) is the true trajectory for each source,

and ϵi j are the independent and identically distributed measure-

ment errors with E [ϵit ] = 0 and Var [ϵit ] = σ 2. µ (t ) is the mean

function, andψk (t ) represents the kth orthogonal curve which is

known as an eigenfunction. We think of these as new dimensions

on which our observations live. A benefit of FPCA is that the eigen-

functions are constructed so that each explains as much of the

variance in the original data set as possible. That is, eigenfunction

1 is the direction of highest variability in the data, eigenfunction

2 the second, and so on. Thus, observations that are extreme with

respect to these new dimensions can be thought of as extreme in

the sense of the original data.

Further, we assume the covariance matrix has eigenvalues λk
for k ∈ [r ], and orthogonal decomposition given by:

Cov[Yi (ti j ),Yi (ti j′ )] =

r∑
k=1

λkψk (ti j )ψk (ti j′ ), (2)

The number of eigenfunctions r in the above equations is a pa-

rameter which must be determined, and we apply both the Akaike

information criterion (AIC) and Bayesian information criterion

(BIC) toward this end [13]. While the formulation of these are simi-

lar, their differences and trade-offs are significant [23]. Primarily,

the choice of method depends on a notion of the “true model.” BIC

is better suited for a simpler, finite dimensional truth, while AIC

is better for more complex and non-parametric models [22]. As

information about this data’s true model is only hypothesis, both

information criterion are applied and results are compared.

To determine outliers, we calculate FPCA scores for our data.

Given by

aik =

∫
(Xi (t ) − µ (t ))ψk (t )dt , (3)

these are the projections of the data onto the eigenfunctions, which

represent their locations along each new dimension. Every data

curve has one score for each eigenfunction. When a rule is set to

define an outlier with respect to a single eigenfunction, we classify

a source IP as such if it meets the criteria on at least one dimension.

In application, we use the threshold-based rule of being more than

three standard deviations away from the mean score. In implement-

ing FPCA, we follow the method of [24], known as the Principal

Analysis by Conditional Expectation (PACE) algorithm, gathered

in the package with the same name [16].

4.2 Clustering with k-Means

k-means aims to separate them outliers into k clusters so that the

sum of squares within clusters is minimized. We use the algorithm

of [8]. Initial centers are chosen at random from the data and are

Figure 1: Elbow Plots for DARPA Clustering

refined by the algorithm. These random starts are carried out mul-

tiple times in order to investigate the sensitivity of the method to

choice of initial centers; our data is not sensitive to the choice of

centers.

To select the number of clusters, the “elbow method” is used, in

which the fraction of variance explained (FVE, y-axis) by the clus-

ters is graphed against the number of clusters (x-axis). Inspecting

the marginal gain associated with the inclusion of each additional

cluster, the “elbow” is identified by the point at which this quantity

decreases abruptly. This elbow may not be well-defined in some

cases [11], resulting in a small set of potential cluster amounts, to

be investigated further; in our application, this is well-defined.

5 APPLICATION & DISCUSSION

5.1 Analysis of DARPA Data

Functional Approach - For the FTP-port traffic, both AIC and

BIC selection methods indicate ten eigenfunctions, which leads to

nine source IPs identified as outliers (based on the common three

standard deviation threshold). These are separated into three clus-

ters of two, two, and five IPs, centered at 0, .656, and 1, respectively.

Elbow plots are shown in Figure 1, with the point colored red indi-

cating the optimal number of clusters. Among the set of outliers

are all four “ground truth” scanner IPs and upon clustering, all of

these addresses appear in those centered around low and mid pro-

portions of successful contacts. While the other five IPs identified

are not considered scanners in the “ground truth”, we find them to

be outliers all captured in the cluster centered around the highest

proportion of successful contacts.

For the HTTP port, both AIC and BIC select 18 eigenfunctions

for the model. 282 source IPs are identified as outliers, and this set

includes all 112 addresses that correspond to the security events in

the data. Results of the clustering are summarized in Table 1, with

the quantity in parentheses representing the number of ground

truth (GTruth) anomalies captured in that cluster. In both cases,

our method finds the ground-truth anomalies, thus demonstrating

correct anomaly identification, but also finds more outliers. We will

discuss this finding and its implications in more detail in §5.3.

Static Fanout Ratio - A summary of the results from applying

the static fanout ratio to the DARPA datasets is given in Table 2.

For the FTP-port, two IPs are detected, both true scanners, and the

other two went undetected. For the HTTP-port, five IPs are caught,
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Figure 2: Scree Plots for Subspace Method

two of which are scanners. The remaining 110 true scanners and

DDoS events are not identified. From comparison to the ground

truth, we see that our method significantly outperforms the static

fanout ratio.

Subspace Approach - In applying the subspacemethod of [12], we

use their recommendation for determining the normal and anoma-

lous components, which is also based on the three standard devi-

ation cutoff. An obstacle presents itself immediately: three scores

exceed the threshold on the first principal component. It follows

that this, and all subsequent dimensions, comprise the anomalous

subspace. Thus, the normal subspace is empty, all source addresses

are fully anomalous, and further analysis becomes nonsensical.

In an attempt to avoid this issue, we try to determine the dimen-

sion of the normal subspace by investigating scree plots, shown

in Figure 2. These illustrate the eigenvalues for the first principal

components [10]. Just as in our selection of the number of clusters,

we look for the elbow in the scree plot, and retain that number of

dimensions for the normal subspace (three for the FTP data and

five for the HTTP data). No changes are made to any other steps

of the procedure. A summary of the results is shown in Table 3,

and we can see that the method performs the same as the static

fanout ratio in the case of the FTP-port, i.e., it detects two of the

four ground-truth scanners. The method identifies many more IPs

when applied to the HTTP data; all anomalies are detected with

the exception of one scanner. Less source addresses are detected

than in our method, but FPCA does catch this undetected anomaly.

The lack of applicability to this synthetic data set when using the

basic and recommended standard deviation cutoff is concerning,

along with other aspects previously mentioned in §2. §5.2 expands

on these issues and how the functional approach improves upon

them.

5.2 FPCA+Clustering vs. Subspace & PCA

We showed that the subspace method is not useable when a rel-

atively large anomaly is found in the first principal component.

This is not an isolated case - we also find this to be a problem in

the real-world NTP data. It is an extreme example of what [19]

refers to as ‘normal subspace pollution:’ a relatively large anomaly

captured by one of the first principal components. Due to this and

the reasons detailed in the remainder of this section, the subspace

method is not discussed in our NTP analysis.

Table 1: FPCA+Clustering - DARPA Data

FTP HTTP

Cluster Center
Detected

(GTruth)
Center

Detected

(GTruth)

1 0 2 (2) .005 55 (3)

2 .656 2 (2) .348 20 (1)

3 1 5 (0) .654 87 (0)

4 .949 120 (108)

It is important to note that the purveyors of this method report

that many procedures can be used to separate the principal compo-

nents into the normal and anomalous subspaces [12]. Going beyond

a standard deviation cutoff, [19] investigates other statistical tech-

niques with less than favorable results, motivated by sensitivity

of the false-positive rate with respect to dimension of the normal

subspace.

Both the functional and subspace methods seek to separate nor-

mal from anomalous, but do so from different perspectives. The

subspace approach decomposes the space in which traffic exists into

the two categories. The assumption that the dimensions capturing

the largest portion of the data’s variance (the first few principal

components) constitute “normal” behavior is not one our model

makes, and we do not assert this is separable from the anomalous.

Instead, the outlier IPs, selected based on source information, are

clustered using destination information. This is exactly what makes

FPCA well-suited for our analysis; it has the ability to detect func-

tional patterns even though they may not be extreme with respect

to magnitude or some other specific feature.

Another benefit of FPCA is its ability to reduce the dimension

of the data we are working with. Rather than deal with infinite-

dimension functional space, we can investigate a finite number of

projections onto components that capture meaningful features of

the data, i.e., the decreasing variance in the eigenfunctions. Viewing

our observations in this way simplifies how to define an outlier in

the functional sense. In the subspace method, all principal compo-

nents are retained, carrying much more information for computa-

tions.

Further, the functional framework has some advantages over

traditional PCA in that it is more flexible. FPCA does not depend

on the structure or size of the input data; that is, it can be collected

from regular or irregular longitudinal data. Consider each flow

measured at different time points as a vector. PCA would require all

vectors to have the same length and each corresponding value to be

measured at the same time point, but these two constraints are not

required when using FPCA. This is better for Internet traffic data,

as not all IPs will necessarily have flows captured at every time

for various reasons (e.g., outages). In FPCA, the eigenfunctions are

smooth, which we believe fits the general nature of changes in flow

data.

There are other practical benefits that FPCA has over PCA. For

example, viewing the smoothing of FPCA as an imputation tech-

nique, [4] shows that it outperforms both probabilistic and Bayesian

PCA through simulation study. The success of the functional ver-

sion suggests that our method is preferred to smoothing the data

prior to application of PCA. Further, [21] demonstrates that PCA
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Table 2: Static Fanout Ratio - DARPA Data

FTP HTTP

IPs Detected vs. (Ground Truth) 2 (2) 5 (2)

Scanners Undetected 2 110

Table 3: Subspace Method - DARPA Data

FTP HTTP

IPs Detected vs. (Ground Truth) 2 (2) 152(111)

Scanners Undetected 2 1

has difficulty with high dimensional sparse data - the estimate of

the covariance matrix resulting from PCA is poor even if numer-

ical results are stable; FPCA overcomes this issue. Recall that the

covariance matrix, given by Equation 2, is directly related to the

eigenvalues in our model, and their estimates are used to determine

the variance captured by each eigenfunction (or principal com-

ponent). In methods that use eigenvalues for decisions regarding

which components to investigate (such as scree plots), poor esti-

mates can skew results. As studied in [19], the subspace method is

very sensitive to howmany principal components comprise the nor-

mal subspace. Our method uses the FPCA implementation of [24],

which was developed specifically for sparse data.

5.3 Analysis of NTP Data

Due to the anonymization of IP addresses every two weeks, we

analyze the NTP traffic flows as six individual datasets. Due to space

limitations, our figures are constructed using only the data from

the October period. Table 4 provides a summary of the numerical

features resulting from FPCA analysis. In each, the AIC and BIC

selection criteria agree on the number of eigenfunctions, providing

the optimal model. That is, the number of eigenfunctions on which

we search for outliers is appropriate - we do not need to consider

any more to find outliers. Based on elbow plots, shown in Figure 3,

each period admits four clusters with the exception of December

29 to January 11. Table 5 contains a summary of the cluster centers

and outliers within each.

We use R 3.3.1 on a basic AMD processor system. Running FPCA

takes no more than five seconds on the largest set of NTP data

(period 1, with about 900 source IPs). By default, R performs these

calculations on a single core; parallelizing the algorithm will only

increase the speed of the procedure. The process of performing k-

means clustering comes at a low cost due to an efficient algorithm

for implementation, but also because it is only carried out using

the outliers detected in the first step, a small subset of the data.

Recall that all source IPs identified from the results of FPCA are

outliers with respect to the number of destinations contacted. That

is, the pattern by which they send requests deviates significantly

from the rest of the traffic in that period. In both the DARPA and

NTP analysis a large quantity of outliers are detected. This does not

necessarily imply that these are scanners, or that they all deviate in

a similar fashion, so the clustering helps us better understand our

set of outlier IPs by using destination information. Specifically, we

Figure 3: Elbow Plot for NTP Outlier Clustering

base the clustering on the source address’ proportion of successful

contacts, where a success is defined to be at least one packet sent in

response by the contacted destination. Since scanners are probing

networks for vulnerable hosts unknown to them, we anticipate

them to meet failed contacts, and this characteristic is expected to

differ for “normal” behavior or even other anomalies.

Similarities arise in the results across all periods. A cluster cen-

tered around a large proportion is always present, capturing many

outliers. The remaining IPs are spread throughout low and mid-

range clusters of smaller sizes. We examined the behavior within

each and found that four common patterns of activity had emerged.

We label these as follows:

• Blatant Scanners (Cluster 1) - Source addresses that contact

a large number of destinations with a low proportion of re-

sponse. These are all captured in the cluster centered around

the smallest value.

• List Keepers (Clusters 2 and 3) - Source addresses that con-

tact many destinations consistently throughout the period,

with a varying proportion of successful requests. Thus, this

behavior is spread throughout clusters centered around the

‘mid-range’ values. We think of these as potential scanners

checking the status of a list of possibly vulnerable destina-

tions.

• Stealthy Scanners (Cluster 3) - Source addresses contacting

few destinations sparsely throughout the period and a gen-

erally low proportion of response. We think of these as true

scanners looking for vulnerable destinations while trying

not to attract attention. With the sometimes small number

of requests, this behavior appears in a cluster with a larger

center.

• Good Guys (Cluster 4) - Source addresses with a consistently

large number of requests sent to a few destinations, and

proportion of successful contacts close to 1, which is typi-

cal behavior of appropriate NTP interactions. These are all

captured by the cluster centered around the largest value.

Certainly, these are not the only types of outlier behavior within

Internet traffic, but these are the ones we observe in this data. The

largest cluster of outliers in our NTP traffic consists of “good guys,”

which can be thought of as known entities conducting business

as usual. Being able to discover these systems and cluster them

analytically makes it easier to verify them, and create a consistent
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Table 4: Summary of NTP Data and Results by Period

Period Hours Source IPs FPCA+clustering Count Fanout Ratio Count

Oct 20-31 288 869 74 15

Nov 1-15 190 713 82 32

Nov 17-25 88 516 76 37

Dec 1-14 195 601 80 27

Dec 15-28 194 658 99 5

Dec 29 - Jan 11 233 686 83 6

Table 5: Summary of NTP Clustering Results by Period

Oct 20-31 Nov 1-15 Nov 17-25 Dec 1-14 Dec 15-28 Dec-29 - Jan-11

Cluster Center Count Center Count Center Count Center Count Center Count Center Count

1 .074 (×) 6 .012 10 .011 17 .126 14 .045 4 .006 3

2 .199 (△) 4 .261 12 .298 14 .261 8 .895 1

3 .949 (◦) 11 .609 11 .525 10 .557 12 .966 7 .954 4

4 .999 (+) 53 .998 49 .995 35 .997 46 1.00 87 1.00 76
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Figure 4: Oct 20-31 NTP Scores with Density Estimates and Cutoff

list for monitoring over time. With this list in hand prior to an

attack, one might be able to find a way to let those sources through

during mitigation, thus improving service levels. The same goes

for IPs thought to be “bad guys” - these can be blocked if necessary.

This list would need to be inspected regularly, as malicious users

could spoof in response to this strategy.

Figure 4 shows the scores and density estimates for the eigen-

functions considered in the Oct 20-31 period, along with vertical

lines representing the three standard deviation cutoff. The shape of

the points in the plots reflect which cluster the IP with the corre-

sponding score exists in; an acting legend is located in the second

column of Table 5. We note that there is at least one outlier on each

eigenfunction, particularly the first, indicated by the single large

score. The associated IP is a member of the cluster centered around

the lowest proportion, making it a "blatant scanner" (illustrating

the concept of ‘normal subspace pollution.’). This illustrates the

concept of ‘normal subspace pollution.’ Members of this cluster

appear as outliers up to the sixth eigenfunction, reinforcing our

belief that the dimensions capturing large variance of the data are

not necessarily ‘normal.’

Another interesting result seen in Figure 4 is the location of IPs in

the cluster centered around .199 (denoted by△ in the graph). As seen

in the DARPA FTP-port analysis, the mid-range clusters capture

malicious behavior, making them important to investigate. These
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IPs are not detected until the sixth and later eigenfunctions, sug-

gesting that even dimensions that capture relatively small amounts

of variance are important to consider when searching for outlier

IPs.

We note that other data choices could be made, e.g., use FPCA

on packet counts received by a destination and cluster on ratio of

packets returned to those sent; this would identify which addresses

provide amplification. Regardless of the characteristics chosen, our

method will also find outliers that do not appear to be “bad guys.”

Rather than label these as false-positives that indicate the need

for refinement of our method, we propose that this mechanism

has significant practical importance. Since nothing is known about

ground truth, we can only say the outliers found are unusual be-

haviors when compared to the rest. If some of the activity is not

considered malicious, these results provide administrators with

aspects of the network to further investigate and determine why

they are identified as outliers. The clustering step streamlines this

secondary analysis, and knowing the centers of the clusters gives

some indication of where to begin searching for true anomalies.

For example, in scanner detection, we look at the outliers with low

proportions of success, as this is expected of scanner behavior.

5.4 Comparison to Static Fanout Ratio

The last column of Table 4 summarizes the results of applying the

static fanout ratio to the NTP datasets. In each period, we have

no more than two addresses that the fanout ratio identifies that

FPCA+Clustering does not. While investigating these IPs to under-

stand why they were not identified by our method, we see that they

contact a small number of destinations only a few times through-

out the period; behavior that we classify as “stealthy scanners.”

It is unknown if these are true scanners, but they warrant closer

analysis.

This sort of stealthy behavior is what one would look for in

the pursuit of scanners, and we want our method to identify as

much of it as possible. In comparing the sources with these features

that were detected in FPCA, a difference in the timing of their

contacts is noticeable. The IPs that FPCA misses send packets to a

handful of destinations only one or two times throughout a period,

making them rather difficult to detect in the first step of our method,

which is based on the time series of contacts. The NTP datasets

are aggregated into hourly buckets, so using a finer resolution

may improve our ability to detect these behaviors, but our method

provides another possible solution. In the set of "stealthy scanners"

that were identified by FPCA, we observe IPs with similar activity

in the same subnet as the missing source address; we could focus

on these subnets. Of course, such commonalities may not always

be true, but our method provides a mechanism through which they

can easily be investigated.

Turning to the additional outliers found by our method, we see

IPs that closely resemble and are in the same subnet as those of the

fanout ratio. The static method fails if the data does not meet its

exact threshold, and there are IPs whose fanout just misses the fixed

cutoff. Our method finds these IPs and is dynamic & data-driven,

because it considers all of the traffic when determining outliers,

and needs no prior knowledge to build a rule. FPCA searches for

abnormal patterns in the data observed. Scanners are expected

to exhibit this with respect to usual traffic and normal processes,

but not always in the same manner. Thus, the adaptability of the

functional approach is better suited for detection than a strict cutoff.

6 CONCLUSIONS

With motivation of detecting scanners, we propose a new method

to identify outlier behavior and patterns in Internet traffic flows

based on FPCA and k-means clustering. We demonstrate its ability

to catch all security events within two synthetic datasets equipped

with ground truth. Further, our method achieves this when exist-

ing PCA-based and static fanout ratio approaches do not. We also

demonstrate our method using real-world NTP traffic flows prior

to a reflection DDoS attack in the beginning of 2014. This illustrates

the network information that can be gained from analyzing outliers

from the method.
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